New Mixed Valence Compounds in the Pb–V–O System: Synthesis and Crystal Structure of Hollandite-Related $Pb_{1,32}V_{8,35}O_{16,7}$ and *R*-Type Hexagonal Ferrite PbV_6O_{11}

O. Mentre and F. Abraham¹

Laboratoire de Cristallochimie et Physicochimie du Solide URA CNRS 452 ENSCL, Universite´ des Sciences et Technologies de Lille, BP 108, 59652 Villeneuve d'Ascq Cedex, France

Received February 7, 1996; in revised form May 13, 1996; accepted May 15, 1996

PbV6O11 have been discovered in the Pb–V–O system. Their monovalent (Na, K, Rb, Cs, Tl, Ag) or divalent (Ba, Pb) **crystal structures were determined at room temperature by** $(1-4)$ and occupies the large tunnels of the M_8P_{16} host single-crystal X-ray analysis. Pb_{1.32}V_{8.35}O_{16.7}: monoclinic, $I2/m$, lattice. Recently the syn *a* = 10.108(3), *b* = 9.887(3), *c* = 2.903(1) Å, γ = 90.84(2)^o, landite-type oxide La_{1.16}Mo₈O₁₆ in which the tunnel cat-
and Z = 1, final R = 0.049 for 452 independent refections. ions are trivial that have b and $Z = 1$, final $R = 0.049$ for 452 independent refections.

PbV₆O₁₁: hexagonal, P6₃*mc*, *a* = 5.754(1), *c* = 13.267(3) Å and
 $Z = 2$, final $R = 0.035$ for 353 independent reflections. For

Pb_{1.32}V_{8.35}O_{16.7} **atoms in the hollandite-type tunnels which are fully occupied.** The existence of previously reported high pressure–high **The O(5) atoms create additional oxygen tetrahedra occupied** temperature synthesized $T_{1.74}V_8O_{16}$ (7) led us to expect **by intratunnel V(3) atoms. The structure of PbV₆O₁₁ is closely** such an $A_xV_8O_{16}$ material with $A = Pb^{2+} - 6s^2$ lone **related to BaTi₂Fe₄O₁₁ and** AV_6O_{11} **compounds (** $A = Na$ **, Sr) pair cation.** which adopt an *R*-type hexagonal ferrite structure: O and Pb
atoms form a hexagonal close-packed structure, and V(1), V(2),
and black hexagonal-platelet single crystals. We report in
and V(3) atoms are surrounded octahed **the lone pair effect of the Pb2**¹ **ion is responsible for the split of these vanadium atoms. The Pb2**¹ **ion is displaced from the EXPERIMENTAL** center of the cuboctahedron to a basal O₃ triangle and forms **an umbrella-like PbO3 entity. As a consequence, the V(4) atom** *Synthesis* **is also off-centered in the trigonal-bipyramid and its environ**ment is rather better described as a tetrahedron, like Fe^{3+} in \blacksquare In hollandite oxides the tunnel sites may be fully numerous magnetoplumbite-type compounds. \circ 1996 Academic $(A_2M_8O_{16}$ compounds) or partially occupied. The occu-**Press, Inc. Press, Inc. Press, Inc. Press, Inc. pancy of the large tunnels by the lead cations of a hypo-**

Numerous studies have been done on oxides with the general formula $A_xM_8O_{16}$ ($x \le 2$) that crystallize with the same structure as the minerals hollandite, cryptomelane, and priderite (tetragonal or monoclinic pseudo-tetragonal
symmetry). The smaller M cation may be a combination of was first heated at 850°C for 96 hr in a silica tube sealed
under primary vaccum. At this stage, X-ray powde

two metals or one metal present at two different oxidation **Two new mixed valence vanadium oxides** $Pb_{1,32}V_{8,35}O_{16,7}$ **and states (Mn, V, Cr, Ti, Ru, Mo). The** *A* **cation may be** lattice. Recently the synthesis and structure of the hol-

thetic $Pb_xV_8O_{16}$ compound being, of course, unknown, the $Pb_2V_8O_{16}$ composition has been arbitrarily chosen for the **INTRODUCTION** synthesis. A mixture of PbO, V_2O_3 , and V_2O_5 corresponding to the reaction

$$
2PbO + 3V_2O_3 + V_2O_5 \rightarrow Pb_2V_8O_{16}
$$

sis of the product revealed a monoclinic, deformed, hol-¹ To whom correspondence should be addressed. **1 landite-type compound as the primary phasis. The powder**

at 1200 \degree C for 48 hr to grow single crystals of this doubtful factors were refined for Pb and V atoms leading to $R =$ hollandite phase. The product thus obtained was not homo- 0.11 and $R_w = 0.13$. In the following difference map, a geneous, but composed of black needles and hexagonal- maximum was observed with coordinates $x = 0.04$, $y = 0$, platelet single crystals accompanied by black powder. EDS $z = 1/2$. It was first fixed at a 2(*b*) (0, 0, 1/2) site, but (energy dispersive spectroscopy) microprobe elemental residual electronic peaks on the $z = 1/2$ plane split it analysis was performed on a Philips 525M scanning elec- so that the $4(i)$ (*x*, *y*, 1/2) special position seemed to be tron microscope connected to an Edax PV9900 analyzer indicated. Distance considerations suggest a lead atom in and revealed V: Pb ratios close to $6:1$ for the two kinds this site according to the prismatic environment with four of single crystals. The site occupation factor $Pb-O$ distances close to 2.7 Å. The site occupation factor

single crystals, they were investigated by X-ray diffraction. quent Fourier difference map revealed a last maximum at

the greatest dimension of the needle as the rotation axis.
Conservation and Weissenberg photographs indicated $2/m$
Conservation and Weissenberg photographs indicated $2/m$ The preliminary ell parameters were a = 14.10, b = 2.90,
 $c = 9.90 \text{ Å}$, and $\beta = 134.2^{\circ}$ corresponding to a distorted

hollandite framework. This cell is in fact equivalent to

the nonconventional body-centered monoc with the ideal tetragonal hollandite-type material strucwas corrected for background and for Lorentz and polar- $Pb_2V_8O_{16}$ and with the true value after the actual formula

atom in a $4(g)$ site $(0, 0, z)$ with $z = 0.24$ and a refined atoms are located in the equivalent special positions: $6(c)$

sample was then reheated in a sealed, evacuated silica tube occupancy of 0.26. At this stage *Uij* anisotropic thermal To determine the actual composition of the two different refined to $\tau = 0.12$ sets $R = 0.07$ and $R_w = 0.08$. A subse-4(*i*) (*x*, *y*, 0) with $x = 0.98$ and $y = 0.12$. The residual *Structure Determinations* **peak** was assigned to vanadium atoms occupying the host (*a*) $Pb_{1,32}V_{8,35}O_{16.7}$. A black needle was mounted with channels of the hollandite framework with a low refined oc-

is Pb_{1.32}V_{8.35}O₁₆. In the last cycles of refinement, U_{ij} ther-
Laue symmetry. Systematic absences (*hkl*: *h* + *k* = 2*n* + $\frac{1}{2}$ and parameters were introduced for the two last added

 $b = 9.90$, $c = 2.90$ Å, and $\gamma = 90.62^{\circ}$. This orientation was $\gamma = (b) PbV_6O_{11}$. A black hexagonal plate shaped crystal chosen for the data collection to allow an easier comparison was isolated from the preparation an chosen for the data collection to allow an easier comparison was isolated from the preparation and mounted on a glass with the ideal tetragonal hollandite-type material struce fiber. Its shape is in agreement with the hexa tures. Single crystal X-ray diffraction data were collected cell $(a = 5.75, c = 13.27 \text{ Å})$, Laue symmetry 6/*mmm*, found on a Philips PW1100 automated diffractometer under the after a preliminary oscillation and Weissenberg study. Ab-
conditions given in Table 1. The intensity of each reflection sences of *hhl* reflections are consistent wit conditions given in Table 1. The intensity of each reflection sences of *hhl* reflections are consistent with space groups was corrected for background and for Lorentz and polar- $P_{3}mc$, $P_{3}mc$, and $P_{62}c$, however the ization effects. The absorption corrections were performed ments were performed satisfactorily only in the noncentrousing the analytical method of De Meulenaer and Tompa symmetric $P6_3mc$ space group leading to fully occupied (8) with for the first stages of the determination a linear atomic positions and acute reliability factors. Ref (8) with, for the first stages of the determination, a linear atomic positions and acute reliability factors. Refinement
absorption coefficient calculated for a hypothetical formula attempts in other space groups are disc had been determined.
The structure refinement has been achieved in the non-distant proofile 1. Absorption corrections were first The structure refinement has been achieved in the non-
non-
performed according to the method of De Meulenaer and
nonconventional $I112/m$ space group. Correlation between performed according to the method of De Meulenaer and standard $I4/m$ and $I112/m$ coordinates is given by Tompa (8) considering an approximated absorption coefficient $\mu = 250$ cm⁻¹.

Calculation of the Patterson function showed that lead *I*4/*m I*112/*m* atoms are located in the $2(b)$ special position of the $P6_3/$ *mmc* space group. A Fourier difference synthesis calculated with $|F_{\text{obs}}| - |F_{\text{Pb}}|$ allowed the location of vanadium atoms in 6(*g*), $4(e)$ ($z \sim 0.15$), and 2(*d*) special positions. Refinement led to abnormally high temperature factors An approximated two vanadium and four oxygen inde- for vanadium atoms and high reliability factor (\approx 0.29), pendent atom skeleton based on the Bi-hollandite struc- preventing oxygen maxima from appearing at the subsetural study (6) was first introduced in the refinement pro- quent Fourier difference maps. The same difficulties were cess leading to the high reliability factor $R = 0.34$ and encountered in the *P62c* space group for which vanadium $R_w = 0.41$. atoms occupy the same special positions with $x \sim 0.5$ for A subsequent Fourier difference synthesis showed a lead the $6(g)$ position. In the $P6₃mc$ space group, vanadium

NEW MIXED VALENT Pb–V–O COMPOUNDS 93

TABLE 1 Crystal Data, Intensity Measurement, and Structure Refinement Parameters for the Two Studied Single Crystals

	$Pb_{1,32}V_{8,35}O_{16,7}$ Crystal data	PbV_6O_{11}
Crystal symmetry	Monoclinic	hexagonal
Space group	I2/m	P6 ₃ mc
Cell dimension (A)	$a = 10.108(3), b = 9.887(3)$ $C = 2.903(1), \gamma = 90.84(3)$	$a = 5.754(1), c = 13.267(3)$
Volume (\AA^3)	290.37	380.4
Z	$\mathbf{1}$	2
	Data collection	
Equipment	Philips PW 1100	Nonius CAD 4
λ (MoK α (graphite monochromotor))	0.7107 Å	0.7107 Å
Scan mode	ω -20	ω -20
Scan width $(°)$	1.2	$0.8 + 0.34$ tan Θ
Θ range (\degree)	$2 - 35$	$2 - 35$
Standard reflections measured every 2 hr (no decay)	310, 060, 030	110, 022, 120
Recording reciprocal space	$-16 \le h \le 16, -13 \le k \le 13, 0 \le l \le 4$	$-9 \le h \le 9, -9 \le k \le 9, 0 \le l \le 21$
Number of measured reflections	1380	3554
Number of reflections $I > 3\sigma(I)$	857	2936
Number of independent reflections	452	353
μ (cm ⁻¹) (for λ K α = 0.7107 Å)	256.5	293.7
Limiting faces and distances(mm) from an arbitrary	100	001
origin	100 0.017	$00\overline{1}$ 0.028
	$0\overline{1}0$	010
	010 0.015	$0\bar{1}00.108$
	001	100 0.07
	$00\overline{1}$ 0.062	$\overline{100}0.075$
		$1\overline{1}100.07$
		110 0.066
Transmission factor range	$0.37 - 0.49$	$0.04 - 0.21$
Merging R factor	0.035	0.053
	Refinement	
Number of refined parameters	46	32
$R = \sum F_{o} - F_{c} /\sum F_{o} $	0.049	0.035
$R_{\rm w} = \left[\sum w (F_{\rm o} - F_{\rm c})^2 / \sum w F_{\rm o}^2\right]^{1/2}$ With $w = 1/\sigma(F_0)$	0.052	0.036

2(*d*). Refinement of these positions and isotropic thermal centrosymmetric, changing the enantiomorphic specificafactors led to reliability factors $R = 0.098$ and $R_w = 0.117$ tion by reversing the sign of the imaginary part of anom-
and acceptable *B* displacement parameters (the *z* coordi- alous dispersion yields the final values and acceptable *B* displacement parameters (the *z* coordinate of Pb was first set at $z = 1/4$ to fix the origin along the $R_w = 0.036$ and allows one to set up the absolute configurafive independent oxygen atoms in two kinds of special isotropic and anisotropic temperature factors are pre-(2/3, 1/3, *z*) for $O(4)$ and $O(5)$ leading to the PbV_6O_{11} and angles in PbV_6O_{11} . chemical formula. At this stage, the *z* coordinate of $O(2)$ For the two structure determinations, the atomic scatterwas fixed at $z = 3/4$ as the origin to allow an easier compari- ing factors for neutral atoms were taken from the "Internason with isostructural compounds. That shifted the Pb atom tional Tables for X-ray Crystallography'' (9) and values from $z = 1/4$ to the $z = 0.230(1)$ refined value. In the last for the anomalous dispersion corrections were taken from cycles of refinement, anisotropic displacement factors for Cromer and Liberman (10). The full matrix least-squares Pb and V atoms were refined, the actual absorption coeffi- refinements were performed with a local modification of cient $\mu = 293.7$ cm⁻¹ was used, secondary extinction was the SFLS-5 program (11).

(with $x \sim 0.5$ and $z \sim 0.0$) $\equiv 6(g)$, 2(*a*) (with $z \sim 0.15$) + taken into account, and a weighting scheme was introduced $2(a)$ (with $z \sim 0.35$) $\equiv 4(e)$, and $2(b)$ (with $z \sim 0.25$) \equiv yielding $R = 0.038$, $R_w = 0.040$. Since the structure is not **c**-axis). A subsequent Fourier difference synthesis showed tion of the true structure. The atomic parameters with positions: $6(c)$ (*x*, *x*, *z*) for $O(1)$, $O(2)$, and $O(3)$ and $2(b)$ sented in Table 4. Table 5 shows the important distances

				Positional parameters			
Atom	Site	Occ.	x	$\mathcal V$	\overline{z}	<i>B</i> or B_{eq} $(\AA^2)^a$	
Pb(1)	4g	0.208(5)	Ω	Ω	0.230(1)	1.92(6)	
Pb(2)	4i	0.122(5)	0.530(1)	0.484(1)	$\boldsymbol{0}$	8.0(5)	
V(1)	4i	1	0.3538(1)	0.1700(1)	$\boldsymbol{0}$	0.62(3)	
V(2)	4i	1	0.8325(1)	0.3519(1)	$\boldsymbol{0}$	0.67(3)	
V(3)	4i	0.087(7)	0.9836(17)	0.123(2)	$\boldsymbol{0}$	0.8(4)	
O(1)	4i	1	0.1569(5)	0.1945(6)	$\boldsymbol{0}$	0.63(9)	
O(2)	4i	1	0.8002(5)	0.1518(6)	$\boldsymbol{0}$	0.87(9)	
O(3)	4i	1	0.5393(6)	0.1739(6)	$\boldsymbol{0}$	0.87(9)	
O(4)	4i	1	0.8413(5)	0.5390(6)	θ	0.67(9)	
			Anisotropic temperature coefficients ^b				
Atom		U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pb(1)		0.0367(17)	0.025(1)	0.010(1)	0.0009(8)	Ω	Ω
Pb(2)	0.11(1)		0.109(8)	0.08(1)	0.073(6)	Ω	Ω
V(1)		0.0099(6)	0.0078(6)	0.0061(6)	0.0006(4)	Ω	Ω
V(2)		0.0104(7)	0.0099(7)	0.0051(6)	$-0.0017(5)$	$\mathbf{0}$	θ
V(3)	0.008(8)		0.02(1)	0.001(7)	$-0.006(6)$	Ω	Ω

*a***ⁱ a***^j Uij*]).

From the structure studies the compositions of the two single crystals are $Pb_{1,32}V_{8,35}O_{16}$ and PbV_6O_{11} . However, for the first compound, from crystal-chemical considera-
tions discussed below, a further oxygen atom must be added so that the composition of the phase must be $Pb_{1,32}V_{8,35}O_{16,70}$. Attempts to synthesize the title compounds in a pure form, by reacting PbO, V_2O_5 , and V_2O_3 in stoichiometric ratios, failed. Most of the experiments led to a mixture of the two phases in approximatively equal proportions, whatever the initial composition and reaction temperature. The best results were obtained when mixtures were heated in a flattened and sealed gold tube at 800°C for 48 hr: PbV_6O_{11} was admixed by a small quantity of the hollandite related phase and $Pb_{1,32}V_{8,35}O_{16,7}$ by a small amount of an unidentified phase (Fig. 1). The powder patterns showed in Fig. 1 were obtained with a Siemens D5000 diffractometer (CuK α radiation) equipped with a
diffracted beam, graphite crystal monochromator. The unit $1 \times V(3)-O(1) : 1.88(1)$
cell parameters were refined using data provided by these
 $2 \times V(3)-O(5) : 1.90(1)$
 2 patterns (Tables 6 and 7). The peak intensities observed $\langle V(3)-\hat{O}\rangle = 1.88$ 2 \times $\langle O(5)-V(3)-O(2)\rangle = 101.3(7)$ on diffraction patterns are compared with the intensity of powder diffraction lines calculated from the program
 FAZY-PHILYERIX (12) based on single crystal structure $2 \times Pb(1) - O$ LAZY-PULVERIX (12) based on single crystal structure
results. It is obvious that the observed intensities are af-
fected by preferred orientation.
 $2 \times Pb(1)-O(2): 2.620(5)$
 $2 \times Pb(1)-O(2): 2.620(5)$
 2×2.581
 $2 \times O(1)-Pb(1)-O(2$

DISCUSSION

In $Pb_{1,32}V_{8,35}O_{16,70}$, V(1) and V(2) octahedra form a ²
[V₈O₁₆] framework analogous to those of hollandite (1). The symmetry of ideal hollandite compounds is tetragonal

TABLE 2 as in priderite, however for numerous compounds the **Positional Parameters and Coefficients of the Anisotropic** structure distorts and the symmetry is lowered from tetrag-
 Positional Parameters and Coefficients of Pb₁₃₂V₈₃₅O₁₆ onal to monoclinic as in the mineral h onal to monoclinic as in the mineral hollandite itself (1). However, the classical $[M_8O_{16}]$ framework is kept although)*^a* slightly distorted. It consists of infinite rutile chains parallel to the **c**-axis sharing edges to form double strings. $V(1)$ and $V(2)$ double strings are connected at their corners to form a $[V_8O_{16}]$ framework structure containing rutile-type channels (1×1 octahedra) along [001] and large tunnels $(2 \times 2 \text{ octahedra})$ with a square cross section. One of the most interesting aspects of the hollandite structure is occupancy of the large tunnels. In $Pb_{1,32}V_{8,35}O_{16,70}$, they are occupied by $Pb(1)$, $Pb(2)$, and $V(3)$ atoms (Fig. 2).

> Byström and Byström (13) placed the tunnel cations of their ideal hollandite at the $2(b)$ special position defined by the intersection of the mirror plane and axis of the

^a The B_{eq} are defined by $B_{eq} = 4/3 \sum_i \sum_j \beta_{ij} a_i a_j$.
 B_{p} **TABLE 3**
 B_{eq} anisotropic temperature factor is defined by $U = \exp(-2\pi^2[\sum_i \sum_j h_i h_j])$ **Interatomic Distances (Å) and Angles (°) for Pb_{1.32}V_{8.35}O_{16.7}**

	Interatomic Distances (A) and Angles () for $P0_{1,32}V_{8,35}O_{16,7}$					
$V(1)$ environment						
	$2 \times O(3)-V(1)-O(1)$: 92.9(4)					
	$2 \times O(3)-V(1)-O(4): 93.9(4)$					
$1 \times V(1) - O(1)$: 2.008(5)	$1 \times O(3)-V(1)-O(4): 172(4)$					
$2 \times V(1) - O(1) : 1.979(4)$	$1 \times O(4)-V(1)-O(4): 96.3(2)$					
$1 \times V(1) - O(3) : 1.875(6)$	$2 \times O(4)-V(1)-O(1) : 91.4(3)$					
$2 \times V(1) - O(4) : 1.947(4)$	$2 \times O(4) - V(1) - O(1)$: 84.3(3)					
$\langle V(1)-O \rangle = 1.956$	$2 \times O(4) - V(1) - O(1)$: 173(3)					
	$2 \times O(1) - V(1) - O(1)$: 81.6(3)					
	$1 \times O(1)-V(1)-O(1)$: 94.3(2)					
	$V(2)$ environment					
	$2 \times O(4)-V(2)-O(2): 92.3(3)$					
	$2 \times O(4)-V(2)-O(3): 96.2(4)$					
$1 \times V(2) - O(2)$: 2.000(6)	$1 \times O(4)-V(2)-O(2): 173(4)$					
$2 \times V(2) - O(2) : 1.976(3)$	$1 \times O(3)-V(2)-O(3): 95.2(2)$					
$2 \times V(2) - O(3) : 1.964(4)$	$2 \times O(3)-V(2)-O(2): 88.3(3)$					
$1 \times V(2) - O(4) : 1.851(6)$	$2 \times O(3)-V(2)-O(2): 84.5(3)$					
$\langle V-O \rangle = 1.955$	$2 \times O(3)-V(2)-O(2): 171(2)$					
	$2 \times O(2)-V(2)-O(2): 83.1(4)$					
	$1 \times O(2)-V(2)-O(2): 94.5(1)$					
	$V(3)$ environment					
$1 \times V(3)-O(1) : 1.88(1)$	$1 \times O(1)-V(3)-O(2):149(2)$					
$1 \times V(3)-O(2): 1.87(1)$	$1 \times O(5)-V(3)-O(5): 99.3(6)$					
$2 \times V(3) - \Omega(5) \cdot 1.90(1)$	$2 \times O(5) - V(3) - O(1) \cdot 984(6)$					

				Positional parameters				
Atom	Site	Occ.	\boldsymbol{x}	y		Z		<i>B</i> or B_{eq} $(\AA^2)^a$
Pb	2b	1	1/3	2/3		0.2231(6)		0.78(1)
V(1)	6с	$\mathbf{1}$	0.5112(2)	$-0.5112(2)$		$-0.0021(6)$		0.28(3)
V(2)	2a	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$		0.1447(7)		0.30(6)
V(3)	2a	$\mathbf{1}$	Ω	Ω		0.3501(7)		0.26(6)
V(4)	2b	$\mathbf{1}$	2/3	1/3		0.2633(7)		0.43(7)
O(1)	6с	$\mathbf{1}$	0.1764(9)	$-0.1764(9)$		0.0776(9)		0.28(12)
O(2)	6с	$\mathbf{1}$	0.1516(10)	$-0.1516(10)$		3/4		0.43(13)
O(3)	6с	$\mathbf{1}$	0.1713(8)	$-0.1713(8)$		0.4169(9)		0.19(11)
O(4)	2b	$\mathbf{1}$	2/3	1/3		0.4109(15)		0.55(24)
O(5)	2b	1	2/3	1/3		0.0936(14)		0.43(23)
				Anisotropic temperature coefficients ^b				
Atom		U_{11}	$U_{\mathcal{D}}$	U_{33}	U_{12}		U_{13}	U_{23}
Pb V(1) V(2) V(3) V(4)		0.0080(2) 0.0021(4) 0.0027(7) 0.0023(7) 0.0026(8)	$= U_{11}$ $= U_{11}$ $= U_{11}$ $= U_{11}$ $= U_{11}$	0.00106(3) 0.00049(6) 0.0005(2) 0.0004(1) 0.0010(2)	$= U_{11}/2$ 0.0004(5) $= U_{11}/2$ $= U_{11}/2$ $= U_{11}/2$	Ω 0 $\mathbf{0}$ Ω	0.0001(1)	θ $= -U_{13}$ $\mathbf{0}$ $\mathbf{0}$ θ

 $a_i^* a_i^* U_{ii}$.

*I*4/*m* tetragonal space group. Then cations are coordinated by eight equivalent oxygen atoms at the vertices of a tetragonal prism. In fact, cations are often displaced from the $2(b)$ Wyckoff position to a more stable one, which is approximatively located at the distance of the nearest oxygen atoms equal to the sum of the ionic radii (1). For instance, in Bi_{1.62}V₈O₁₆, Bi³⁺ is displaced from the 2(*b*) to the 4(*e*) position (0, 0, *z*) with $z = 0.10$ leading to a practically square planar coordination with four Bi–O distances of 2.473 Å and an O–Bi–O angle of 166° . Pb(1) atoms occupy, in our case, a $4(g)$ site $(0, 0, z)$ with $z = 0.23$ and so is displaced nearer to the **c**-axis origin than in the mineral
hollandite. Pb(1) is at the top of a PbO₄ pyramid with
two Pb(1)–O(1) distances of 2.56 Å and two Pb(1)–O(2) distances of 2.62 Å. This kind of lead pyramidal environment is commonly found. For example, in red PbO lead oxide (14), Pb atoms are at the top of a $PbO₄$ pyramid with four Pb–O distances of 2.32 Å and two O–Pb(1)–O
angles of 118°. The hollandite Pb(1)O₄ pyramid is flatter with two angles of 150° . In fact, the coordination around Pb(1) must be completed by the Pb²⁺stereoactive lone pair; the oxygen atoms and the lone pair form a square pyramid
centered by the Pb atom. Galy and Enjalbert reported that
the center Es of the sphere of influence of the Pb^{2+} lone pair is at 0.86 Å from the Pb^{2+} cation center (15). On the basis of their results Es occupies, in the $Pb-V$ hollandite, a (0, 0, *z*) position with $z = 0.52$ which is very close to the $3 \times Pb-O(1)$: 2.485(12)
2(*b*) cationic site of the ideal *IA/m* hollandite.
 $6 \times Pb-O(2)$: 2.903(4)
 $3 \times Pb-O(3)$: 3.036(13)

Pb(2) and V(3) atoms are both offset in the tunnels. The $\frac{3 \times 10^{-10}}{(Pb-O)} = 2.831$ Pb(2) atom is shifted from the 2(*b*) site, not along the [001]

TABLE 4 direction of the tunnel but in the (001) plane to become
Positional Parameters and Coefficients of the Anisotropic the nearest neighbor of two O(1) and two O(2) atoms. **Positive and Coefficients of the Anisotropic** the nearest neighbor of two $O(1)$ and two $O(2)$ atoms.
Phence Thermal Pactors for PbV_6O_{11} atoms are thus at the top of a square pyramid Pb (2) atoms are thus at the top of a square pyramid $Pb(2)O(1)_2O(2)_2$, less flat than $Pb(1)O_4$. The $Pb(2)-O(1)$ and $Pb(2)-O(2)$ distances are, respectively, 2.63(1) and 2.83(1) Å and the $O(1)$ –Pb(2)– $O(2)$ angle is 111(4)°. The O_4 basal plane of the pyramid is parallel to the **c**-axis and extends over two unit cells. The Pb(2) atom is about 0.7 Å from the Pb(2)' $(x = 0.470, y = 0.516, z = 0)$ equivalent position by the twofold axis. Thus, the two related positions cannot be simultaneously occupied. For the reasons mentioned above the center Es of the sphere of influence of the Pb^{2+} lone pair is located near the Pb(2)' position. Pb(2) atoms are so randomly distributed over Pb(2) and *Pb(2)'* sites.

Intratunnel V(3) atoms are coordinated to one $O(1)$ and one $O(2)$ atom of the channels edges with an $O(1)-V(3)$ $O(2)$ angle of 149 (2) °. This coordination of the V (3) atom is quite unusual and unlikely. It may be completed to a ^a The B_{eq} are defined by $B_{eq} = 4/3 \sum_i \sum_j \beta_{ij} a_i a_j$.
 B_{eq} are defined by $B_{eq} = 4/3 \sum_i \sum_j \beta_{ij} a_i a_j$.
 B_{eq} The anisotropic temperature factor is defined by $U = \exp(-2\pi^2 [\sum_i \sum_j h_i h_j])$

TABLE 5 Interatomic Distances (\AA **) and Angles (** \degree **) for PbV₆O₁₁**

$V(1)$ environment					
	$1 \times O(1)-V(1)-O(1)$: 86.1(5)				
	$1 \times O(3)-V(1)-O(3) : 93.9(4)$				
$2 \times V(1) - O(1) : 1.983(9)$	$1 \times O(4) - V(1) - O(5) : 174(6)$				
$2 \times V(1) - O(3) : 1.913(9)$	$2 \times O(1) - V(1) - O(4)$: 82.6(6)				
$1 \times V(1) - O(4)$: 2.114(9)	$2 \times O(1) - V(1) - O(5)$: 84.8(2)				
$1 \times V(1) - O(5) : 1.998(10)$	$2 \times O(1) - V(1) - O(3) : 173(5)$				
$\langle V-O \rangle = 1.984$	$2 \times O(1) - V(1) - O(3)$: 89.6(7)				
	$2 \times O(3)-V(1)-O(4): 91.1(4)$				
	$V(2)$ environment				
$3 \times V(2) - O(1) : 1.971(9)$	$3 \times O(1) - V(2) - O(1) : 101.2(7)$				
$3 \times V(2) - O(2) : 2.053(8)$	$3 \times O(2)-V(2)-O(2)$: 78.8(3)				
$\langle V-O \rangle$: 2.012	$3 \times O(1)-V(2)-O(2):164(3)$				
	$6 \times O(1)-V(2)-O(2): 88.9(5)$				
	$2 \times O(3)-V(2)-O(5) : 93.1(7)$				
$3 \times V(3)-O(2) : 2.007(8)$	$V(3)$ environment $3 \times O(2) - V(3) - O(2)$: 81.0(3)				
$3 \times V(3) - O(3) : 1.924(9)$	$3 \times O(3)-V(3)-O(3) : 100.4(4)$				
$\langle V-O \rangle = 1.965$	$3 \times O(2) - V(3) - O(3) : 166(3)$				
	$6 \times O(2)-V(3)-O(3): 88.4(6)$				
	$V(4)$ environment				
$3 \times V(4) - O(2) : 1.826(7)$	$3 \times O(2) - V(4) - O(2) : 119.1(6)$				
$1 \times V(4) - O(4) : 1.960(16)$	$1 \times O(4) - V(4) - O(5) : 180(16)$				
$1 \times V(4) - O(5)$: 2.259(16)	$3 \times O(4) - V(4) - O(2)$: 95.5(8)				
$\langle V-O \rangle = 1.939$	$3 \times O(5)-V(4)-O(2): 84.4(6)$				
	Pb-O distances				
$3 \times Pb-O(1)$: 2.485(12)					
$6 \times Pb-O(2)$: 2.903(4)					

FIG. 1. X-ray powder diffraction patterns of PbV_6O_{11} and $Pb_{1,32}V_{8,35}O_{16,7}$.

should be located in the $2(b)$ site at the center of the sented by Abriel *et al.* for $K_{0.78}V_{10.44}O_{17.22}$, $K_{0.92}V_{10.16}O_{17.08}$, with the values of the mean oxidation state of V atoms. force to the $O(5)$ atom. In $A_{2-x}V_{8+2x}O_{16+x}$ ($A = K$, Rb) the O(5) atom must bond Hollandite-related compounds exhibit two available to two adjacent V(3) atoms to be stable, because a monova- host sites per unit cell. Occupancies of the three indepenlent neighboring *A* cation cannot provide sufficient electro- dent entities present in the tunnels imply that a tunnel is

tunnels. Because of their proximity to the Pb(2) sites, intro- and $Rb_{0.9}V_{10.2}O_{17.1}$ compounds are, respectively, 3.63, 3.64, duction of these hypothetical O(5) atoms in the refinement and 3.61 Å (17). In BaV_{10-x}O₁₇, on the other hand, a process is not realistic. Such O(5) located atoms are present divalent Ba cation provides a strong enough electrosatic in $A_{2-x}V_{8+2x}O_{16+x}$ (16, 17) and in the recently published force to the O(5) atom so the two adjacent available V(3) $BaV_{10-x}O_{14}$ (18) pseudo-hollandite phases. In these com-sites are not always both occupied. A BaV_{9.89}O₁₇ single pounds, they complete an octahedral $V(3)-O(5)$ atom co- crystal study revealed a $V(3)-V(3)$ distance of 3.60 A. ordination with an acceptable V(3) distance of 1.80 A in In our case, the occupancy of two neighboring V(3) sites $BaV_{9.89}O_{17}$ (18). Figure 3 allows a comparison between related by the twofold axis leads to two V(3)O₄ tetrahedra tetrahedral and octahedral intratunnel vanadium atoms. linked by an $O(5)-O(5)$ edge with a $V(3)-V(3)$ distance In our case, the tetrahedral V(3)–O(5) distance (1.90(1) A) of 2.47 A which is highly improbable. V(3)O₄ tetrahedra is close to V(3)–O(1) and V(3)–O(2) distances, however could also be linked by O(5) corners to form finite or V(3)O₄ tetrahedra are highly distorted considering the infinite zig-zag chains parallel to the **c**-axis. A more satisfac-
large O(1)–V(3)–O(2) angle of 149°. The V–O distance tory hypothesis is a random distribution of tory hypothesis is a random distribution of $Pb(1)$, $Pb(2)$, suggest that the V(3) site is occupied by a V^{3+} cation. The and V(3)O₄ tetrahedra within the large tunnels. When the bond valence sum calculation using data of Brown and sites are occupied in two consecutive unit cells by two $O(5)$ Altermatt (19) confirms this hypothesis (Table 8). In all atoms (of one $V(3)O₄$ tetrahedron), the occupancy of the the hollandite-related vanadium oxides, this calculation two neighboring cells by Pb(1) atoms (Fig. 4) leads to a indicates that V(1) and V(2) sites are occupied by both Pb(1)–O(5) distance of 2.12 Å which is an acceptable V^{3+} and V^{4+} ; the bond valence sums for these sites are value. Thus the postulated O(5) atom is bonded to V(3) close for our Pb-hollandite and $K_2V_8O_{16}$ in accordance and to Pb(1) atoms which provide sufficient electrostatic

static force to the $O(5)$ atom. $V(3)-V(3)$ distances pre- randomly occupied by 0.832 Pb(1), 0.488 Pb(2), and 0.7

h k l	$2\theta_{\rm obs}$	$2\theta_{\rm calc}$	$I_{\rm obs}/I_{\rm o}$	$I_{\rm calc}/I_{\rm o}$	in NaV_6O_{11} synthesized for the reduction of molten $NaVO3$ (25)
$\overline{1}$ 1 0	12.424	12.421	16.1	16.5	tained by solid state reaction (2)
110	12.604	12.605	14.9	19.7	$\rm SrT_{x}V_{6-x}O_{11}$ (T = Ti, 0 < x ≤ 1.
200		17.534		1.5	$T = \text{Fe}, 0 < x \leq 1.4$ were synth
020		17.929		0.1	the first R-type hexagonal ferrit
220	25.005	24.992	26.1	34.6	
220	25.364	25.367	34.0	37.5	lead. R and R^* blocks of PbV_6O
310	27.845	27.826	100	100	The structure of PbV_6O_{11} can b
310	28.086	28.082	71.2	51.3	ing along the c-axis of four O_4 a
130	28.344	28.338	69.0	42.7	cording to the following sequence
130	28.567	28.589	31.3	93.2	with a hexagonal close packing. V(
101		32.066		0.4	occupy the octahedral sites while
011		32.123		0.7	
400		35.496		1.5	the center of a triangular bipyram
040		36.317		1.2	plane is formed by three oxygen a
2 1 1	36.763	36.760	7.5	19.2	$(Fig. 6)$.
2 1 1		36.893		24.8	All the published results ass
121	36.904	36.911	13.5	25.8	
121	37.023	37.043	8.9	17.4	
330		37.877		0.1	
330		38.458		0.1	
420	39.766	39.791	8.5	12.0	TABLE 7
420	40.286	40.288	13.6	12.3	Observed and Calculated X-Ray F
240	40.367	40.353	11.7	9.8	for PbV_6O_{11} from Siemens D5000
240	40.863	40.843	10.0	15.9	1.54056 \AA)
301		41.017		18.1	
0 3 1	41.448	41.428	8.9	22.6	h k l $2\theta_{\rm obs}$ ^(°) $2\theta_{\rm calc}(\degree)$

 PbV_6O_{11} is essentially isostructural with BaTi₂Fe₄O₁₁ $(20-22)$, BaSn₂Fe₄O₁₁ (22, 23), BaFe₂Ru₄O₁₁ (24), and MV_6O_{11} ($M = Na$, Sr) (25–30) compounds. Their structures are closely related to $BaFe_{12}O_{19}$ (31, 32), a well known hexagonal ferrite having a magnetoplumbite structure. The structure of $BaFe_{12}O_{19}$ can be described as the packing along the **c**-axis of the hexagonal cell of so-called $\begin{array}{ccc} 300 & 55.238 & 55.249 & 16.8 & 9.7 \\ 008 & - & 55.349 & - & 3.2 \\ R \text{ blocks } (\text{Ba}^2 + \text{Fe}_6^{3+}\text{O}_{11})^{2-} \text{, and } S \text{ spinel blocks, } (\text{Fe}^{3+}\text{O}_8)^{2+} \text{, } & 206 & 56.105 & 55.514 &$ following the *RSR***S** sequence (the * symbol denotes that the same block has been turned 180° around the **c**-axis). Note. Refined parameters: $a = 5.754(1)$ Å, $c = 13.267(3)$ Å.

TABLE 6 *R* blocks in RR^* structure were first isolated by the **Observed and Calculated X-Ray Powder Diffraction Pattern** BaTi₂Fe₄O₁₁ synthesis, Ti⁴⁺ introduction bringing electro-
for Pb₁₃₂V₈₃₅O₁₆₇ from Siemens D5000 Goniometer Data (λ = neutrality to the *R*-block **for Pb_{1.32}V_{8.35}O_{16.7} from Siemens D5000 Goniometer Data (** λ **= neutrality to the** *R***-block (20). More recently electroneu-
1.54056** Å) **traity** has been obtained with mixed valency vanadium **1.54056 A˚)** trality has been obtained with mixed valency vanadium in $NaV₆O₁₁$ synthesized for the first time by electrolytic reduction of molten NaVO₃ (25). NaV₆O₁₁ was also obtained by solid state reaction (26). Lately $SrV₆O₁₁$ and $\text{Tr} T_x V_{6-x} O_{11}$ (*T* = Ti, 0 < *x* ≤ 1.5, *T* = Cr, 0 < *x* ≤ 1.0, $T = \text{Fe}, 0 < x \leq 1.4$) were synthesized (27). PbV₆O₁₁ is the first *R*-type hexagonal ferrite compound containing lead. *R* and *R** blocks of PbV_6O_{11} are shown in Fig. 5.

The structure of PbV_6O_{11} can be described by the stacking along the **c**-axis of four O_4 and two Pb O_3 layers according to the following sequence: $-(PbO_3)-(O_4)-(O_4)$
with a hexagonal close packing. V(1), V(2), and V(3) atoms
occupy the octahedral sites while the V(4) atom is near the center of a triangular bipyramid whose triangular basal plane is formed by three oxygen atoms of the $PbO₃$ layers (Fig. 6).
All the published results assign the centrosymetric

Observed and Calculated X-Ray Powder Diffraction Pattern for PbV₆O₁₁ from Siemens D5000 Goniometer Data ($\lambda = 1.54056 \text{ Å}$)

0 3 1	41.448	41.428	8.9	22.6	h k l	$2\theta_{\rm obs}$ ^(°)	$2\theta_{\rm calc}$ ^(°)	$I_{\rm obs}/I_{\rm o}$	$I_{\rm calc}/I_{\rm o}$
		<i>Note.</i> Refined parameters: $a = 10.108(3)$ Å, $b = 9.887(3)$ Å, $c = 2.903(1)$			002	13.334	13.336	16.9	17
$\text{A}, \gamma = 90.84(2)$ °.					100	17.786	17.782	6.9	9.2
					101	19.010	19.006	51.8	50.4
					102	22.270	22.292	3.6	4.9
					004	26.860	26.857	47.4	23.3
		$O(5)$ (meaning 0.35 V(3) O_4 tetrahedra). The average occu-			103	26.924	26.931	40.6	39.0
		pancy per unit cell is $0.832 + 0.488 + 0.7 = 2.02$ leading			110	31.061	31.055	46.6	55.2
		to fully occupied tunnels. It is noteworthy that in other			104	32.397	32.396	69.4	61.6
		hollandite-related vanadium oxides, $BaV_{10-x}O_{17}$ (18) and			112	33.936	33.932	100	100
					200		36.011		0.8
		$A_{2-x}V_{8+2x}O_{16+x}$ (16, 17), the tunnels are also fully occupied.			201	36.666	36.664	11.1	10.6
		Thus the actual composition of this phase is closely related			105	38.405	38.400	24.1	18.0
	to $Pb_{1,32}V_{8,35}O_{16,7}$.				202	38.564	38.562	36.6	40.4
		Despite the composition closeness to $Pb_{4/3}V_{8+1/3}O_{16+2/3}$,			006		40.776		2.3
		propitious to tunnel hosts arrangement, neither intratunnel			114	41.406	41.512	7.3	9.5
		nor intertunnel ordering has been detected by oscillation			203	41.567	41.563	62.1	43.6
					106	44.799	44.803	12.9	5.4
	and Weissenberg photographs.				204		45.489	—	1.9
		PbV_6O_{11} is essentially isostructural with BaTi ₂ Fe ₄ O ₁₁			210		48.273		1.6
		$(20-22)$, BaSn ₂ Fe ₄ O ₁₁ (22, 23), BaFe ₂ Ru ₄ O ₁₁ (24), and			211	48.828	48.790	8.5	11.2
		MV_6O_{11} ($M = Na$, Sr) (25–30) compounds. Their struc-			205 212	50.170	50.180	12.9	9.1
		tures are closely related to $BaFe_{12}O_{19}$ (31, 32), a well			107		50.311		1.8
						51.535	51.545	20.6	15.1
		known hexagonal ferrite having a magnetoplumbite struc-			116 213		51.121 52.778		8.1
		ture. The structure of $BaFe_{12}O_{19}$ can be described as the			300	55.238	55.249	16.8	7.4 9.7
		packing along the c-axis of the hexagonal cell of so-called			008		55.349		3.2
		R blocks $(Ba^{2+}Fe_6^{3+}O_{11})^{2-}$, and S spinel blocks, $(Fe^{3+}O_8)^{2+}$,			206	56.105	55.514	46.1	33.3
		following the RSR^*S^* sequence (the $*$ symbol denotes that							

the tunnels of the hollandite $Pb_{1,32}V_{8,35}O_{16.7}$. not converge.

TABLE 8 Bond Valence in Four Hollandite Related Oxides

Site Assumed	V(1)			V(2)		V(3)	Mean oxidation state for
valence	$+3$	$+4$	$+3$	$+4$	$+3$	$^{+4}$	vanadium
BaV _{9.89} O ₁₇ $K_{0.78}V_{10.44}O_{17.22}$	$+3.18$ $+3.12$	$+3.46$ $+3.48$	$+3.03$ $+2.92$	$+3.38$ $+3.26$	$+2.76$ $+2.74$	$+3.09$ $+3.06$	3.24 3.22
$Pb_{1,32}V_{8,35}O_{16,7}$ $K_2V_8O_{16}$	$+3.40$ $+3.40$	$+3.80$ $+3.80$	$+3.41$ $+3.40$	$+3.81$ $+3.80$	$+2.75$	$+3.03$	3.68 3.75

*P*63/*mmc* space group to the hexagonal *R*-type ferrites at room temperature (20–22). NaV₆O₁₁ was first reported to crystallize in *P62c* (25), but Kanke *et al.* described it later in the $P6_3/mmc$ space group (29). Similar results were found for other mixed valency vanadium oxides, e.g., SrV_6O_{11} or substituted $SrT_xV_{6-x}O_{11}$ (*T* = Ti, Cr, Fe) whose structures were solved by Rietveld analysis of their neutron powder diffraction data (27). The existence of mirror symmetry at $z = 1/4$ in $P6_3/mmc$ and $P62c$ space groups would place the Pb atom on the $O(2)$ plane resulting in a symmetrical coordination polyhedron. As in hollandite-type compounds, the Pb atom is displaced from the center of its polyhedron toward the $O(1)$ plane, leading to three shorter Pb–O(1) distances of 2.485 (12) \dot{A} . Actually, Pb is at the center of a PbO_3E tetrahedron, formed by three $O(1)$ atoms and completed by the lone pair E of Pb^{2+} which is oriented toward the O(3) triangle (Fig. 7). In PbV_6O_{11} the steric effect of the $6s^2$ lone pair of Pb^{2+} is probably the main reason for the space group asymmetry. In the *P*6₃/*mmc* space group, Pb atoms should be split over two positions on both sides of the mirror (4(*f*) Wyckoff posi-**FIG. 2.** Coordination of (a) Pb(1), (b) Pb(2), and (c) V(3) within tion) with half occupancy; refinement of such a model did

 $NaV₆O₁₁$ undergoes a two-step second-order structural

FIG. 3. Comparison between tetrahedral and octahedral vanadium in the tunnels of the hollandige-related vanadium oxides (*z* values for V and O(5) atoms are given on the **c**-axis).

phase transition upon cooling: hexagonal $(P6_3/mmc) \rightarrow$ hexagonal $(P6_3mc) \rightarrow$ orthorhombic $(Cmc2_1)$ at, respectively, 245 and 35–40 K (30). X-ray single crystal data refinement at 200 K showed that $NaV₆O₁₁$ is essentially isostructural with PbV_6O_{11} , as a consequence of the lack of the center of symmetry but, in our case, the asymmetry is emphasized. Pb and $V(4)$ triangular bipyramidal atoms are on both sides of the pseudo-mirror containing the $O(2)$ atoms with the splits $\Delta = 0.35$ Å (Pb) and $\Delta = 0.17$ Å (V(4)) greater than in the $P6_3mc$ NaV₆O₁₁ state ($\Delta = 0.03$ A for Na, $\Delta = 0.063$ A for V). Some other differences between these two isostructural compounds concerned the distortion of the vanadium polyhedra. The $V(1)O_6$ octahedron is more distorted in PbV_6O_{11} with O–V–O bond angles spanning a $82.6^{\circ} - 93.9^{\circ}$ range. The V(1) atom deviates from the plane composed of the equatorial $O(1)$ and $O(3)$ atoms to elongate the apical $V(1)-O(4)$ distance (2.114 Å) and shortens the opposite V $(2)-O(5)$ distance (1.998 Å) . Moreover an additional distortion appears in the equatorial basis, V(1)–O(1) distances (1.983(9) \dot{A}) being much longer than $V(1) - O(3)$ (1.913(9) A).

 $V(2)O_6$ and $V(3)O_6$ octahedra share an oxygen $O(2)_3$ face to form dimeric units which connect the $V(1)$ octahedral sheets. These two octahedra are equivalent in *R*-type compounds adopting $P6_3/mmc$ symmetry; they are highly FIG. 4. Possible $O(5)$ environment in lead–vanadium hollandite (*z* distorted. The three V– $O(2)$ distances with common oxyvalues for intratunnel ions are given on the **c**-axis). gen atoms are elongated whereas the other vanadium oxygen distances are shortened and the $O(2)-V-O(2)$ angles are acute relaxing V–V Coulomb repulsion. In $\text{NaV}_6\text{O}_{11}$

FIG. 5. Crystal structure of PbV₆O₁₁. V(1), V(2), and V(3) atoms form octahedra whereas the V(4) atom is displaced from the center of a trigonal-bipyramid site. Pb is also displaced from the center of a cuboctahedron.

FIG. 6. Stacking sequences of layers along the **c**-axis in PbV_6O_{11} .

dimer split into two nonequivalent $VO₆$ octahedra, howcompared to 2.68 Å in both forms of $\text{NaV}_6\text{O}_{11}$. Mössbauer features allowed them to select the last model.
The location of the trigonal-bipyramidal cations in the The V(4) position is refined 0.17 Å above the triang

The location of the trigonal-bipyramidal cations in the

at 200 K ($P6_3mc$ space group), the V(2)O₆ octahedra of a occupancy (32). In the first, the trigonal bipyramidal site dimer split into two nonequivalent VO₆ octahedra, how- is occupied by the Fe³⁺ cations with a roo ever the V–O distances remain almost unchanged. In con-
thermal amplitude of 0.22 \AA along the **c**-axis. The second, trast, in PbV₆O₁₁, the two octahedra become very differ- already proposed by Obradors *et al.* (21) and by Cadee ent: for the V(3) atom the V–O distances are close to those *et al.* (22), assumes the existence of a static disorder of the in $\text{NaV}_6\text{O}_{11}$, and for the V(2) atom all the V–O distances cations on the two pseudo-tetrahedral sites of the bipyraare about 0.05 \AA longer. The V–V distance across the mid. The last presented a dynamic disorder of the cations shared octahedral face is elongated (2.725 \AA in PbV₆O₁₁ which would move from one site to the other. Structural and

R block compounds has been extensively discussed because base of the bipyramid with the normal isotropic temperaof its dynamic characteristics and its high thermal ellipsoids ture factor $B_{eq} = 0.57 \text{ Å}^2$. No residual electronic peak was in the **c** direction. Consequently this bipyramid could be apparent on the other side on a final Fourier difference regarded as two tetrahedra sharing a face in the $P6_3/mmc$ synthesis. Thus we can conclude that, as in other vanadium mirror plane. In 1974, Haberey *et al.* presented an ideal compounds, V(4) atoms are not split. Vanadium is fivemodel for BaFe₄Ti₂O₁₁ in which the centers of the bipyra-coordinated with three short basal V–O distances (1.826) midal sites were occupied by cations (20). Then, Obradors \vec{A}) and two longer apical distances of 1.960 and 2.259 \vec{A} . proposed for $BaFe_{12}O_{19}$ three hypotheses about this site However the difference between these two V–O distances is much greater than in other MV_6O_{11} compounds leading to a rather fourfold coordination of vanadium atoms rarely found for V^{3+} or V^{4+} , but certainly seen for $V(3)$ in the hollandite $Pb_{1,32}V_{8,35}O_{16.7}$.

The stability ad electroneutrality of PbV_6O_{11} is assured by the simultaneous presence of trivalent and tetravalent vanadium atoms whose relative distribution over the sites has been studied for other $A(T, V)_6O_{11}$ compounds. Electrostatic site potentials and Madelung energies were calculated for several compounds (27, 29) but don't point out a general simple rule, results depending on the nature of **FIG. 7.** Opposite Pb and V(4) displacements from the O(2) plane. the *A* and the *T* atoms. Moreover, these calculations were

Assumed valence	V(1)	V(2)	V(3)	U(4)
$+3$	3.06	2.90	3.36	3.51
$+4$	3.42	3.24	3.75	3.91

tion data (27). The Brown bond valency method was ap-
plied to the PbV₆O₁₁ compound, taking account of the
V-O distances reported in Table 5. For each V site, the
 V -O distances reported in Table 5. For each V site, valence was calculated on the basis of a V^{4+} and V^{3+} hy- 4. N. Kinomura, *J. Am. Ceramic Soc.* **56**(6), 344 (1973). pothesis (Table 9). Results suggest V^{3+} for $V(1)$ and $V(2)$ 5. H. Leligny, Ph. Labbe, M. Le Desert, and B. Raveau, *Acta Crystallogr.* B **48.** 134 (1950).

and V^{4+} for $V(3)$ and $V(4)$.
In all the R and the RS-type hexagonal ferrite compounds
In all the R and the RS-type hexagonal ferrite compounds
7. W. Abriel, F. Rau, and K. J. Range, *Mater. Res. Bull.* **14,** 1463 (1 studied to date, the *M*(1) site, which corresponds to V(1) in 8. J. De Meulenaer and H. Tompa, *Acta Crystallogr*. **19**, 1014 (1965). PbV_1O_{11} and to the center of octahedra shared by edges to 9. "International Tables for X-Ray Crystallography," Vol. IV. Kynoch form layers perpendicular to c-axis are occupied by triva-
Press, Birmingham, 1974. form layers perpendicular to **c**-axis, are occupied by triva-
lent cations. Kanke *et al.* (29) concluded that the $M(3)$ sites
(trigonal-bipyramid) of the AT_6O_{11} -type compounds are
lent cations. Kanke *et al.* (29) c preferred by trivalent cations in the case of a divalent *A* ion 12. K.Yvon,W.Jeitschko, andE.Parthe, *J.Appl.Crystallogr.* **10,**73(1977). and by tetravalent cations in the case of a monovalent *A* ion 13. A. Byström and A. M. Byström, *Acta Crystallogr.* **3,** 146 (1950).
(Table 10) Our results indicate that $V(A)$ sites are in fact 14. R. W. G. Wyckoff (Ed.) (Table 10). Our results indicate that $V(4)$ sites are in fact 14 . R. W. G. Wyckoff (Ed.), "Crystal Structure," Vol. 1, p. 134. Intersci-
favored by V^{4+} despite the divalent Pb ion. The $M(2)$ sites V^{3} and R. En equivalent $V(2)$ and $V(3)$ sites; bond valence calculations 567 (1986).
suggest that the $V(2)$ site is occupied by V^{3+} whereas the 17. W. Abriel, C. Garbe, F. Rau, and K. J. Range, Z. Kristallogr. 176(1–2), suggest that the V(2) site is occupied by V^{3+} whereas the 17. W. Abriel, C. $V^{(2)}$ aite is founded by the V^{4+} ion. A stually, because of its 113 (1986). V(3) site is favored by the V⁴⁺ ion. Actually, because of its
0.35 Å shift below the $z = 1/4$ pseudo-mirror plane, Pb
8. Y. Kanke, E. Takayama-Muromachi, K. Kato, and K. Kosude, J.
Solid State Chem. 113, 125 (1994). atoms are nearer to V(2) $(Pb-V(2) = 3.459 \text{ Å})$ than V(3) 19. I. D. Brown and D. Altermatt, *Acta Crystallogr. B* **41,** 244 (1985). atoms (Pb–V(3) = 3.759 Å). The consequent asymetric 20. F. Haberey and M. Velicescu, *Acta Crystallogr. B* 30, 127 (1974).
 • electrostatic repulsion in the R blocks favors cation V(2) 21. X. Obradors, A. Collomb, J. P electrostatic repulsion in the R blocks favors cation V(2) 21. X. Obradors, A. Collomb, J. Pannetier, A. Isalgue, J. Teyada, and
trivalent. Indeed the mean V(2)–O distance, 2.012 Å, agrees
with $r(^{VI}V^{3+}) + r(^{IV}O^{2-}) = 2.0$ distance, 1.965 Å, agrees with $r(\text{V}^1\text{V}^{4+})$ + $r(\text{V}^1\text{O}^{2-})$ = 24. D. Verdoes, H. W. Zandbergen, and D. J. W. Ijdo, *Mater. Res. Rull.* 1.96 Å (33).
22, 1 (1987). **22,** 1 (1987). **22,** 1 (1987). **22,** 1 (1987). **22,** 8 described before attemnts to prepare pure PbV. O. 25. M. E. De Roy, J. P. Besse, and R. Chevalier, *J. Solid State Chem.*

As described before, attempts to prepare pure $\text{PbV}_6\text{O}_{11}$ ^{25. M. E. De Roy}, *As* (1987). 6O11 **67,** 185 (1987). powder failed. Nor could sufficiently large single crystals be 26. Y. Kanke, E. Takayama-Muromachi, K. Kato, and Y. Matsui, *J. Solid*

Charge Distribution among *M***(1),** *M***(2), and** *M***(3) Sites in** *Phys. Soc. Jpn.* **60,** 2530 (1991). AV_6O_{11} **Compounds with** *R*-Type Structure $(A = Na, Sr, Pb)$ 29. Y. Kanke, K. Kato, E. Takayama-Muromachi, and M. Isobe, *Acta*

Site	NaV ₆ O ₁₁	SrV ₆ O ₁₁	PbV_6O_{11}	Atom in PbV ₆ O ₁₁	C ysianogi. 30. Y. Kanke, Isobe, E.T. 112, 429 (1)
M(1)	$+3$	$+3$	$+3$	V(1)	31. W. D. Tow
M(2)	$+4$	$+4$	$+3$	V(2)	437 (1967).
			$+4$	V(3)	32. X. Obrador
M(3)	$+4$	$+3$	$+4$	V(4)	J. Solid Sta
					33 R D Shan

TABLE 9 obtained in our preparations. As soon as this problem is **Bond Valence in PbV₆O₁₁ solved, magnetic and electric measurements will be investi**gated to determine PbV_6O_{11} behavior which would reflect the charge distribution of vanadiumions. On the other hand, partial substitution of iron for vanadium allows the prepara- $\frac{1}{2}$ tion of pure PbV_{6-x}Fe_xO₁₁ compounds whose structure and properties are under investigation.

REFERENCES

- sometimes in conflict with experimental neutron diffrac-
 $1. J.E.Post, R.B. Von Dreele, and P.R. Busck, *Acta Crystallogr. B*$
 $1056 (1982).$
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	- *State Chem.* **89,** 130 (1990).
	- 27. Y. Kanke, F. Izumi, E. Takayama-Muromachi, K. Kato, T. Kamiyama, and H. Asano, *J. Solid State Chem*, **92**, 261 (1991).
28. Y. Uchida, Y. Kanke, E. Takayama-Muromachi, and K. Kato, *J.*
		-
		- *Crystallogr. C* **48,** 1376 (1992).
		- 30. Y. Kanke, F. Izumi, Y. Morii, E. Akiba, S. Funahashi, K. Kato, M. Isobe, E. Takayama-Muromachi, and Y. Uchida, *J. Solid State Chem.* **112,** 429 (1994).
		- *M*(1) 13 13 13 V(1) 31. W. D. Townes, J. H. Fang, and A. J. Perotta, *Z. Kristallogr.* **125,**
		- 32. X. Obradors, A. Collomb, M. Pernet, D. Samaras, and J. C. Joubert, *J. Solid State Chem.* **56,** 171 (1985).
		- 33. R. D. Shannon, *Acta Crystallogr. A* **32,** 751 (1976).